Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575607

RESUMO

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilação , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/metabolismo , Vias Biossintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética
2.
Biomater Adv ; 158: 213769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266333

RESUMO

The effectiveness of polypropylene (PP) mesh is often compromised by severe inflammation. Engineering anti-inflammatory coatings has significant implications for PP mesh to repair unwanted hernias. Here, we presented a facile strategy to develop an anti-fouling coating consisting of zwitterionic poly(carboxybetaine methacrylate) (PCBMA), which could prohibit protein adsorption to endow PP mesh with anti-inflammatory efficacy. The incorporation of PCBMA coating had little impact on the raw features of PP mesh. While the modified mesh PCBMA-PP possessed noticeable hydrophilicity increase and surface charge reduction. The excellent lubricity and surface stability enabled PCBMA-PP to exhibit superior anti-fouling capacity, thus efficiently inhibiting the adsorption of proteins. In vivo experiments showed that incorporating the PCBMA layer could provide PP meshes with outstanding anti-inflammatory effects and tissue compatibility for repairing hernias.


Assuntos
Herniorrafia , Polipropilenos , Humanos , Adsorção , Telas Cirúrgicas , Hérnia , Inflamação , Anti-Inflamatórios
3.
ACS Nano ; 18(2): 1582-1598, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170456

RESUMO

Heterogeneity of the tumor microenvironment (TME) is primarily responsible for ineffective tumor treatment and uncontrolled tumor progression. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and obtain a satisfactory antitumor effect. However, the efficiency of current pyroptosis therapeutics, which mainly depends on a single endogenous or exogenous stimulus, is limited by the intrinsic pathological features of malignant cells. Thus, it is necessary to develop a synergistic strategy with a high tumor specificity and modulability. Herein, a synergistic nanoplatform is constructed by combining a neutrophil camouflaging shell and a self-synergistic reactive oxygen species (ROS) supplier-loaded polymer. The covered neutrophil membranes endow the nanoplatform with stealthy properties and facilitate sufficient tumor accumulation. Under laser irradiation, the photosensitizer (indocyanine green) exogenously triggers ROS generation and converts the laser irradiation into heat to upregulate NAD(P)H:quinone oxidoreductase 1, which further catalyzes ß-Lapachone to self-produce sufficient endogenous ROS, resulting in amplified ICD outcomes. The results confirm that the continuously amplified ROS production not only eliminates the primary tumor but also concurrently enhances gasdermin E-mediated pyroptosis, initiates an ICD cascade, re-educates the heterogeneous TME, and promotes a systemic immune response to suppress distant tumors. Overall, this self-synergistic nanoplatform provides an efficient and durable method for redesigning the immune system for targeted tumor inhibition.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Morte Celular Imunogênica , Piroptose , Espécies Reativas de Oxigênio , Temperatura Alta , Linhagem Celular Tumoral , Microambiente Tumoral
4.
J Genet Genomics ; 51(1): 48-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37481122

RESUMO

The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that Smith-like (LSM) family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus and surrounded nucleolus oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through the regulation of the P-body.


Assuntos
Oogênese , Corpos de Processamento , Animais , Feminino , Camundongos , Oócitos/metabolismo , Oogênese/genética
5.
Front Cell Dev Biol ; 11: 1308352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033866

RESUMO

Background: Disulfidptosis is a newly discovered form of regulated cell death. The research on disulfidptosis and tumor progression remains unclear. Our research aims to explore the relationship between disulfidptosis-related genes (DRGs) and the clinical outcomes of papillary thyroid carcinoma (PTC), and its interaction on the tumor microenvironment. Methods: The single-cell RNA seq data of PTC was collected from GEO dataset GSE191288. We illustrated the expression patterns of disulfidptosis-related genes in different cellular components in thyroid cancer. LASSO analyses were performed to construct a disulfidptosis associated risk model in TCGA-THCA database. GO and KEGG analyses were used for functional analyses. CIBERSORT and ESTIMATE algorithm helped with the immune infiltration estimation. qRT‒PCR and flow cytometry was performed to validate the hub gene expression and immune infiltration in clinical samples. Results: We clustered PTC scRNA seq data into 8 annotated cell types. With further DRGs based scoring analyses, we found endothelial cells exhibited the most relationship with disulfidptosis. A 4-gene risk model was established based on the expression pattern of DRGs related endothelial cell subset. The risk model showed good independent prognostic value in both training and validation dataset. Functional enrichment and genomic feature analysis exhibited the significant correlation between tumor immune infiltration and the signature. The results of flow cytometry and immune infiltration estimation showed the higher risk scores was related to immuno-suppressive tumor microenvironment in PTC. Conclusion: Our study exhibited the role of disulfidptosis based signature in the regulation of tumor immune microenvironment and the survival of PTC patients. A 4-gene prognostic signature (including SNAI1, STC1, PKHD1L1 and ANKRD37) was built on the basis of disulfidptosis related endothelial cells. The significance of clinical outcome and immune infiltration pattern was validated robustly.

6.
Cancer Lett ; 576: 216411, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757903

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant with limited treatment options. Deubiquitinases (DUBs), which cleave ubiquitin on substrates, can regulate tumor progression and are appealing therapeutic targets, but there are few related studies in PDAC. In our study, we screened the expression levels and prognostic value of USP family members based on published databases and selected USP10 as the potential interventional target in PDAC. IHC staining of the PDAC microarray revealed that USP10 expression was an adverse clinical feature of PDAC. USP10 promoted tumor growth both in vivo and in vitro in PDAC. Co-IP experiments revealed that USP10 directly interacts with PABPC1. Deubiquitination assays revealed that USP10 decreased the K27/29-linked ubiquitination level of the RRM2 domain of PABPC1. Deubiquitinated PABPC1 was able to couple more CLK2 mRNA and eIF4G1, which increased the translation efficiency. Replacing PABPC1 with a mutant that could not be ubiquitinated impaired USP10 knock-down-mediated tumor suppression in PDAC. Targeting USP10 significantly delayed the growth of cell-derived xenograft and patient-derived xenograft tumors. Collectively, our study first identified USP10 as the DUB of PABPC1 and provided a rationale for potential therapeutic options for PDAC with high USP10 expression.

7.
Plant Dis ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729647

RESUMO

Brachiaria Griseb is an important gramineous forage grown in tropical regions, and also a main grass species uses to restore grasslands in tropical and subtropical regions of China. In August 2022, symptoms of leaf blight were observed on nearly 30% of the Brachiaria forage grass in the base of the Chinese Academy of Tropical Agricultural Sciences, Hainan, China. Symptomatic leaves initially exhibited small, reddish-brown, round or oval spots on their tips, subsequently expanding in size along the leaf margin, and gradually becoming wilted and dry. Twenty leaves showing typical symptoms were randomly collected and pieces (5×5 mm) from the junction of diseased and healthy region were cut, sterilized with 75% alcohol for 30 s, followed by 5% sodium hypochlorite for 30 s. Rinsed three times with sterile water and dried with sterile filter paper. Leaf pieces were placed on potato dextrose agar (PDA) and incubated at 28℃. The colonies were white on the surface and gray on the reverse side. The conidiogenous cells were monoblastic, hyaline, globose or ampulliform, and 6 to 8.7(13.1) ×5 to 7.2 (9) m (n=200). Conidia is single celled, smooth, black, spherical, or ellipsoidal, and (11)13 to 16.5 × (8.2) 10.3 to16.1 m (n=100). Setae were not observed. The morphological characteristics of the isolates were consistent with Nigrospora species. A representative isolate (LNH-5) was selected for genomic DNA extraction. Sequences of the transcribed spacer region of rDNA (ITS), partial translation elongation factor (TEF1), and beta-tubulin fragment (TUB) were amplified using primer pairs ITS1/ITS4(White et al. 1990), EF-728F and EF-986R (Carbone et al. 1999) and Bt2a and Bt2b (Glass et al. 1995), respectively. The sequences of ITS (OQ473493), TEF1 (OQ506059) and TUB gene (OQ506055) were submitted to GenBank. They were 99 to 100% identical to the Nigrospora hainanensis ITS(OM283581.1)(538 out of 519 bp),TEF1(YK019415.1)(274 out of 276 bp),and TUB (OK086377.1)(405 out of 405 bp) sequences. The phylogenetic maximum likelihood analysis using the combined ITS, TEF1 and TUB sequences indicated that the isolate was part of the N. hainanensis clade (100% bootstrap value) that also contained the type isolate LC6979 of this species. Pathogenicity was tested on 15 healthy Brachiaria plants. Fungal conidia were harvested by flooding two-week-old single conidial cultures with sterile water, centrifuging, and adjusting the concentration to 107 spores/mL. Then 10 µL of conidial suspension was dropped onto the surfaces of leaves wounded with a sterile needle. Sterile distilled water was used for control treatment. The test was repeated three times. After inoculation, the plants were kept at 90~100% relative humidity at 25 to 28°C in a greenhouse for two weeks, and monitored daily for lesion development. Seven days post inoculation, all the inoculated leaves presented symptoms similar to those observed under natural conditions, while the control leaves showed no symptoms. The fungus was re-isolated from the diseased tissues by the single spore isolation method (Choi et al. 1999) to complete Koch's postulates. This pathogen has been reported on sugarcane in China (Raza et al., 2019; Zheng et al., 2022). To our knowledge, this is the first report of N. hainanensis causing leaf blight on Brachiaria plants in China.

8.
Technol Health Care ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37599547

RESUMO

BACKGROUND: Mild cognitive impairment (MCI) is a mild memory or cognitive impairment. OBJECTIVE: To explore the relationship between serum klotho (K1) protein and insulin-like growth factor-1 and mild cognitive impairment in the elderly in order to provide accurate and appropriate indicators for clinical diagnosis and treatment of MCI. METHODS: This randomized stratified study adopted a multistage cluster sampling method. 161 elderly patients with mild cognitive impairment were included as the MCI group, and 161 healthy people matched with the MCI group in gender, age and education were selected as the control group. RESULTS: The levels of serum K1 protein and insulin-like growth factor-1 in the MCI group were lower than those in the control group (P< 0.05). Both IGF-1 and K1 had predictive value for MCI (P< 0.05). The area under the curve (AUC) of IGF-1 for predicting MCI was 0.859 (95% CI: 0.790∼0.929), and the AUC of K1 for predicting MCI was 0.793 (95% CI: 0.694∼0.892). The value of joint prediction of the two indicators was the highest, with an AUC of 0.939 (95% CI: 0.896-0.993). CONCLUSION: High serum K1 and insulin-like growth factor-1 are the protective factors of cognitive impairment in MCI patients. Both IGF-1 and serum K1 proteins have predictive value for MCI, and the combination of the two indicators has the highest predictive value.

9.
Adv Healthc Mater ; 12(29): e2301641, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548137

RESUMO

Immunotherapy is considered to be an effective treatment for cancer and has drawn extensive interest. Nevertheless, the insufficient antigenicity and immunosuppressive tumor microenvironment often cause unsatisfactory therapeutic efficacy. Herein, a photo-activated reactive oxygen species (ROS) amplifying system (defined as "M-Cu-T") is developed to induce antitumor immune response by triggering a tumor-specific immunogenic pyroptosis. In M-Cu-T, M1 macrophage membrane-based vesicles are used for drug loading and tumor targeting, photosensitizers (meso-tetra(4-aminophenyl) porphyrin, TAPP) are used as a pyroptosis inducer, copper ions (Cu2+ ) can enhance ROS-induced pyroptosis by consuming antioxidant systems in cells. As expected, the prepared M-Cu-T targets enrichment into tumor cells and cascades the generation of ROS, which further induces pyroptosis through caspase 3-mediated gasdermin E (GSDME) cleavage under laser activation. The pyroptotic cancer cells accompanying secrete related pattern molecules, induce immunogenic cell death, and activate antitumor immunity for immunotherapy. An effective tumor ablation is observed in LLC and CT26 cancer mouse models. This study provides inspiration for boosting the immunogenicity and achieving satisfactory therapeutic effects in cancer therapy.


Assuntos
Neoplasias , Piroptose , Animais , Camundongos , Biomimética , Cobre , Espécies Reativas de Oxigênio , Imunoterapia , Neoplasias/tratamento farmacológico
10.
Bioengineering (Basel) ; 10(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508790

RESUMO

The copolymers of cycloolefin (COC), a type of thermoplastic material, have been widely used for the large-scale industrial fabrication of droplet microfluidic devices, which is often performed using hot-embossing or injection-molding techniques. The generation of droplets and the uniformity of droplet sizes are significantly affected by the surface wettability of COC during fabrication and the pressure stability of the employed fluid pump during operation. In order to alleviate the effects of undesirable surface wettability and pressure variation on the generation of droplets in COC-based devices, a simple surface modification procedure was applied to hydrophobically modify the surfaces of COC-based microchannels for large-scale industrial production. The surface modification procedure consisted of an oxygen plasma treatment of the polymer surface followed by a solution-phase reaction in fluorocarbon solvent. The experimental results demonstrate that following the proposed surface modification, the COC droplet microfluidic devices could stably generate microvolume water droplets with a small coefficient of variation, even if the pressure of the dispersed phase (water) fluctuated. The durability test results regarding the modified surfaces show that the hydrophobicity of the modified COC surfaces could be sustained for up to four months, deteriorating with time thereafter. Our study can provide a potential solution useful in and guidance for the large-scale industrial production of droplet microfluidic devices for various applications, including polymerase chain reaction and single-cell analysis.

11.
FEBS J ; 290(18): 4577-4590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245155

RESUMO

Intrinsic drug resistance mechanisms of tumor cells often reduce intracellular drug concentration to suboptimal levels. Epithelial-to-mesenchymal transition (EMT) is a pivotal process in tumor progression and metastasis that confers an aggressive phenotype as well as resistance to chemotherapeutics. Therefore, it is imperative to develop novel strategies and identify new targets to improve the overall efficacy of cancer treatment. We developed SN38 (active metabolite of irinotecan)-assembled glycol chitosan nanoparticles (cSN38) for the treatment of pancreatic ductal adenocarcinoma (PDAC). Furthermore, cSN38 and the TGF-ß1 inhibitor LY364947 formed composite nanoparticles upon self-assembly (cSN38 + LY), which obviated the poor aqueous solubility of LY364947 and enhanced drug sensitivity. The therapeutic efficacy of cSN38 + LY nanotherapeutics was studied in vitro and in vivo using suitable models. The cSN38 nanoparticles exhibited an antitumor effect that was significantly attenuated by TGF-ß-induced EMT. The cellular uptake of SN38 was impeded during EMT, which affected the therapeutic efficacy. The combination of LY364947 and cSN38 markedly enhanced the cellular uptake of SN38, increased cytotoxic effects, and inhibited EMT in PDAC cells in vitro. Furthermore, cSN38 + LY significantly inhibited PDAC xenograft growth in vivo. The cSN38 + LY nanoparticles increased the therapeutic efficacy of cSN38 via repressing the EMT of PDAC cells. Our findings provide a rationale for designing nanoscale therapeutics to combat PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fator de Crescimento Transformador beta/genética , Transição Epitelial-Mesenquimal/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
12.
Int Immunopharmacol ; 118: 110079, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996741

RESUMO

BACKGROUND: Ursolic acid (UA) is a triterpenoid compound found in natural plants. It has been reported to have anti-inflammatory, antioxidant, and immunomodulatory properties. However, its role in atopic dermatitis (AD) is unknown. This study aimed to evaluate the therapeutic effect of UA in AD mice and explore the underlying mechanisms. METHODS: Balb/c mice were treated with 2, 4-dinitrochlorobenzene (DNCB) to induce AD-like lesions. During modeling and medication administration, dermatitis scores and ear thickness were measured. Subsequently, histopathological changes, levels of T helper cytokines, and oxidative stress markers levels were evaluated. Immunohistochemistry staining was used to assess changes in the expression of the nuclear factor of kappa B (NF-κB) and NF erythroid 2-related factor 2 (Nrf2). Furthermore, CCK8 assay, reactive oxygen species (ROS) assay, real-time PCR, and western blotting were employed to evaluate the effects of UA on ROS levels, inflammatory mediator production, and the NF-κB and Nrf2 pathways in TNF-α/IFN-γ-stimulated HaCaT cells. RESULTS: The results showed that UA significantly reduced dermatitis score and ear thickness, effectively inhibited skin proliferation and mast cell infiltration in AD mice, and decreased the expression level of T helper cytokines. Meanwhile, UA improved oxidative stress in AD mice by regulating lipid peroxidation and increasing the activity of antioxidant enzymes. In addition, UA inhibited ROS accumulation and chemokine secretion in TNF-α/IFN-γ-stimulated HaCaT cells. It might exert anti-dermatitis effects by inhibiting the TLR4/NF-κB pathway and activating the Nrf2/HO-1 pathway. CONCLUSION: Taken together, our results suggest that UA may have potential therapeutic effects on AD and could be further studied as a promising drug for AD treatment.


Assuntos
Dermatite Atópica , Triterpenos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , NF-kappa B/metabolismo , Dinitroclorobenzeno , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio , Pele/patologia , Transdução de Sinais , Citocinas/metabolismo , Triterpenos/uso terapêutico , Triterpenos/farmacologia , Camundongos Endogâmicos BALB C
13.
Nanoscale ; 15(10): 4991-5000, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36786677

RESUMO

The bimetallic 2D conductive MOFs of M1Pc-M2-O, possessing dual metal sites to realize flexible molecular-level structural modification, are brilliant catalysts for electrochemical CO2 reduction. However, the bimetallic centers bring about the complex regulatory mechanism of catalytic activity and obscure principles for catalyst design. Herein, systematical theoretical investigation unravels intrinsic descriptors to design favorable M1Pc-M2-O catalysts based on the discovered coarse-fine two-stage activity regulation mechanism. The reaction site controls the M-COOH distance of the key intermediate and therefore affects the reaction kinetics for the first stage of coarse regulation. The other metal site influents the d-band center of the reaction site and thus constitutes the second stage of fine regulation. The coarse and fine regulation are related to the valence electrons (V), electronegativity (E), and bond length (LM-N/O) between the metal and coordination atoms. The intrinsic descriptor ϕ = (4 × VM1 × (EM1 + EN/O)/EN/O + VM2 × (EM2 + EN/O)/EN/O) × LM1-N/O (with a coefficient ratio of 4 : 1) was eventually established and correlated well with the reported experiments. On this basis, the favorable catalysts CoPc-Zn-O and CoPc-Co-O were located. The research results could contribute to the diversity of bimetallic 2D c-MOFs in CO2RR.

14.
Int J Cancer ; 152(11): 2396-2409, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757203

RESUMO

Macrophage is an essential part of the tumor immune microenvironment of pancreatic ductal adenocarcinoma. In our study, we explored the CXCR4+ macrophages subset on its prognosis value, immune profile and distinct function in pancreatic cancer progression. Specimens from 102 postoperative pancreatic patients were analyzed by flow cytometry or immune-fluorescence, and the prognostic value of CXCR4+ macrophages infiltration was further determined by Cox regression. In silico analysis on TCGA, ICGC database and single-cell sequencing of pancreatic ductal adenocarcinoma further validated our findings. We found that high CXCR4+ macrophages infiltration was associated with poor overall survival (P < .01) and disease-free survival (P < .05) as an independent factor. CXCR4+ macrophages exhibited an M2 protumor phenotype with high expression of CD206. The function of CXCR4+ macrophages was further analyzed in the murine orthotopic PDAC model with its tumor promotion effect and inhibition of CD8+ T cells. Mechanistic and RNA-seq analysis showed that CXCR4+ macrophages participated in extracellular matrix remodeling procedures and especially secreted SPARC through CXCR4/PI3K/Akt pathway promoting tumor proliferation and migration. Our study reveals that CXCR4+ macrophages infiltration is an indicator of poor prognosis of PDAC and targeting these cells was potentially crucial in immunotherapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Microambiente Tumoral , Receptores CXCR4 , Neoplasias Pancreáticas
15.
Cell Mol Gastroenterol Hepatol ; 15(1): 261-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36174925

RESUMO

BACKGROUND & AIMS: Liver contains high frequency of group 1 innate lymphoid cells (ILC), which are composed of comparable number of type 1 ILC (ILC1) and natural killer (NK) cells in steady state. Little is known about whether and how the interaction between ILC1 and NK cells affects the development of alcoholic liver disease. METHODS: A mouse model of chronic alcohol abuse plus single-binge (Gao-Binge model) was established. The levels of alanine aminotransferase/aspartate aminotransferase, hepatic lipid, and inflammatory cytokines or neutrophils were measured to evaluate the degree of liver injury, steatosis, and inflammation. Flow cytometric analysis, cell depletion, or adoptive transfer were used to interrogate the interaction between ILC1 and NK cells. RESULTS: Upon chronic alcohol consumption, NK cells, but not ILC1, underwent apoptosis, resulting in ILC1 dominance among group 1 ILC. Interleukin (IL) 17A expression was up-regulated, and increased IL17A was mainly derived from liver ILC1 after chronic alcohol feeding. Either depletion of ILC1 or neutralization of IL17A could significantly attenuate liver steatosis, inflammation, and injury in alcohol-fed mice. In contrast, normalization of the ILC1/NK cells ratio through NK cells transfer or expanding NK cells had a significant hepatoprotection against alcohol-induced steatohepatitis. Furthermore, NK cell-derived interferon gamma exerted a protective function via inhibiting IL17A production by liver ILC1 during alcoholic steatohepatitis. CONCLUSIONS: This is the first study showing that the interplay between liver ILC1 and NK cells occurs and drives the development of alcoholic steatohepatitis. Our findings support further exploration of liver ILC1 or NK cells as a therapeutic target for the treatment of alcohol-associated liver disease.


Assuntos
Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Camundongos , Animais , Imunidade Inata , Células Matadoras Naturais , Inflamação/metabolismo , Etanol/toxicidade
16.
Antibiotics (Basel) ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421301

RESUMO

The large-scale epidemic of the tet(X4) gene in the livestock and poultry industry is threatening public health; however, there is still a lack of comparative studies on tet(X4)-bearing plasmids in chicken and pig Escherichia coli. To evaluate the prevalence trend of tet(X4)-bearing plasmids and the factors influencing their persistence in the livestock and poultry industry, we examined the fitness cost, stability under tetracyclines pressure, and conjugation frequencies at various temperatures of six tet(X4)-bearing plasmids in four representative pig E. coli isolates and chicken E. coli isolates. Compared with pig E. coli, the plasmid in chicken E. coli showed lower fitness cost, and stronger ability to promote bacterial biofilm formation and motility. Meanwhile, the presence of tetracycline may favor the stability of tet(X4)-bearing plasmids, which was more common in chicken E. coli. Furthermore, the optimal temperature for IncX1 tet(X4)-bearing plasmid conjugation was 42 °C, and its conjugation frequency in chicken E. coli was higher than that in pig E. coli, whereas the optimal temperature for IncFII tet(X4)-bearing plasmid conjugation was 37 °C and it performed better in pig E. coli, suggesting the predominant plasmid types circulating in chicken E. coli and pig E. coli may be distinct. Collectively, although tet(X4) currently appears to be more prevalent in pig E. coli, this is probably independent of the fitness cost caused by tet(X4)-plasmids. To curb the future spread of the tet(X4) gene, reduced tetracyclines usage and tailored interventions should be applied in different breeding industries.

17.
Nat Commun ; 13(1): 7352, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446781

RESUMO

In glasses, secondary (ß-) relaxations are the predominant source of atomic dynamics. Recently, they have been discovered in covalently bonded glasses, i.e., amorphous phase-change materials (PCMs). However, it is unclear what the mechanism of ß-relaxations is in covalent systems and how they are related to crystallization behaviors of PCMs that are crucial properties for non-volatile memories and neuromorphic applications. Here we show direct evidence that crystallization is strongly linked to ß-relaxations. We find that the ß-relaxation in Ge15Sb85 possesses a high tunability, which enables a manipulation of crystallization kinetics by an order of magnitude. In-situ synchrotron X-ray scattering, dielectric functions, and ab-initio calculations indicate that the weakened ß-relaxation intensity stems from a local reinforcement of Peierls-like distortions, which increases the rigidity of the bonding network and decreases the dynamic heterogeneity. Our findings offer a conceptually new approach to tuning the crystallization of PCMs based on manipulating the ß-relaxations.

18.
J Chem Phys ; 157(18): 184504, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379802

RESUMO

Establishing the structure-property relationship is an important goal of glassy materials, but it is usually impeded by their disordered structure and non-equilibrium nature. Recent studies have illustrated that secondary (ß) relaxation is closely correlated with several properties in a range of glassy materials. However, it has been challenging to identify the pertinent structural features that govern it. In this work, we show that the so-called polyamorphous transition in metallic glasses offers an opportunity to distinguish the structural length scale of ß relaxation. We find that, while the glass transition temperature and medium-range orders (MROs) change rapidly across the polyamorphous transition, the intensity of ß relaxation and the short-range orders (SROs) evolve in a way similar to those in an ordinary reference glass without polyamorphous transition. Our findings suggest that the MRO accounts mainly for the global stiffening of the materials and the glass transition, while the SRO contributes more to ß relaxation per se.

19.
Front Immunol ; 13: 956984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225934

RESUMO

Pancreatic cancer has an exclusive inhibitory tumor microenvironment characterized by a dense mechanical barrier, profound infiltration of immunosuppressive cells, and a lack of penetration of effector T cells, which constitute an important cause for recurrence and metastasis, resistance to chemotherapy, and insensitivity to immunotherapy. Neoadjuvant therapy has been widely used in clinical practice due to its many benefits, including the ability to improve the R0 resection rate, eliminate tumor cell micrometastases, and identify highly malignant tumors that may not benefit from surgery. In this review, we summarize multiple aspects of the effect of neoadjuvant therapy on the immune microenvironment of pancreatic cancer, discuss possible mechanisms by which these changes occur, and generalize the theoretical basis of neoadjuvant chemoradiotherapy combined with immunotherapy, providing support for the development of more effective combination therapeutic strategies to induce potent immune responses to tumors.


Assuntos
Terapia Neoadjuvante , Neoplasias Pancreáticas , Humanos , Imunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
20.
Micromachines (Basel) ; 13(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144178

RESUMO

At present, there is an increasing need to mimic the in vivo micro-environment in the culture of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly popular since they can provide a micro-environment that is closer to the in vivo environment compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we will summarize the fabrication methods of concave microwells, as well as their applications in micro-tissue engineering. The fabrication methods of concave microwells include traditional methods, such as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen droplets. The fabrication of concave microwells is transferring from professional microfabrication labs to common biochemical labs to facilitate their applications and provide convenience for users. Concave microwells have mostly been used in organ-on-a-chip models, including the formation and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also used microwells to study the influence of substrate topology on cellular behaviors. We will briefly review their applications in different aspects of micro-tissue engineering and discuss the further applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell aggregates of different cell lines will be a popular application of concave microwells, while integrating physiologically relevant molecular analyses with the 3D culture platform will be another popular application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more applications in drug screening and xenogeneic implantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...